六度空间
2019-11-16 16:41:08
本文总阅读量

“六度空间”理论又称作“六度分隔(Six Degrees of Separation)”理论。这个理论可以通俗地阐述为:“你和任何一个陌生人之间所间隔的人不会超过六个,也就是说,最多通过五个人你就能够认识任何一个陌生人。”如图所示。

“六度空间”理论虽然得到广泛的认同,并且正在得到越来越多的应用。但是数十年来,试图验证这个理论始终是许多社会学家努力追求的目标。然而由于历史的原因,这样的研究具有太大的局限性和困难。随着当代人的联络主要依赖于电话、短信、微信以及因特网上即时通信等工具,能够体现社交网络关系的一手数据已经逐渐使得“六度空间”理论的验证成为可能。

假如给你一个社交网络图,请你对每个节点计算符合“六度空间”理论的结点占结点总数的百分比。

输入格式:

输入第1行给出两个正整数,分别表示社交网络图的结点数N(1<N≤103,表示人数)、边数M(≤33×N,表示社交关系数)。随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个结点的编号(节点从1到N编号)。

输出格式:

对每个结点输出与该结点距离不超过6的结点数占结点总数的百分比,精确到小数点后2位。每个结节点输出一行,格式为“结点编号:(空格)百分比%”。

输入样例:

1
2
3
4
5
6
7
8
9
10
10 9
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10

输出样例:

1
2
3
4
5
6
7
8
9
10
1: 70.00%
2: 80.00%
3: 90.00%
4: 100.00%
5: 100.00%
6: 100.00%
7: 100.00%
8: 90.00%
9: 80.00%
10: 70.00%

AC代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#include<iostream>
#include<vector>
#include<queue>
#include<string.h>

using namespace std;

typedef pair<int, int> PII;

const int N = 1010;

int G[N][N], n, m;

bool visited[N];

int SDS(int i)
{
int cnt = 0;
int level = 0, last = i, tail = -1;
queue<int> q;
visited[i] = true;
q.push(i);
cnt++;
while (!q.empty())
{
int k = q.front();
q.pop();
for (int j = 1; j <= n; j++)
{
if (j == k)
continue;
if (!visited[j] && G[k][j])
{
q.push(j);
tail = j;
visited[j] = true;
cnt++;
}
}
if (k == last)
{
level++;
last = tail;
}
if (level == 6)
break;
}
return cnt;
}

int main()
{
cin >> n >> m;
while (m--)
{
int a, b;
scanf("%d%d", &a, &b);
G[a][b] = 1;
G[b][a] = 1;
}
for (int i = 1; i <= n; i++)
{
int ret = SDS(i);
printf("%d: %.2f", i, (double)ret / n * 100);
puts("%");
memset(visited, false, sizeof(visited));
}
return 0;
}